Home > Agri-News, New Technology > Aeroponics:: A new technique for quality food with better plant nutient uptake

Aeroponics:: A new technique for quality food with better plant nutient uptake

Aeroponics is the process of growing plants in an air or mist environment without the use of soil or an aggregate medium (known as geoponics). The word “aeroponic” is derived from the Greek meanings of aero– (air) and ponos (labour). Aeroponic culture differs from both conventional hydroponics and in-vitro (plant tissue culture) growing. Unlike hydroponics, which uses water as a growing medium and essential minerals to sustain plant growth, aeroponics is conducted without a growing medium. Because water is used in aeroponics to transmit nutrients, it is sometimes considered a type of hydroponics.

Benefits and Limitations:Ecological advantages

Aeroponic growing is considered to be safe and ecologically friendly for producing natural, healthy plants and crops. The main ecological advantages of aeroponics are the conservation of water and energy. When compared to hydroponics, aeroponics offers lower water and energy inputs per square meter of growing area. When used commercially, aeroponics uses one-tenth of the water otherwise necessary to grow the crop.but this can be reduced to as little as one-twentieth.

Increased air exposure:: Air cultures optimize access to air for successful plant growth. Materials and devices which hold and support the aeroponic grown plants must be devoid of disease or pathogens. A distinction of a true aeroponic culture and apparatus is that it provides plant support features that are monomial. Monomial contact between a plant and support structure allows for 100% of the plant to be entirely in air. Long-term aeroponic cultivation requires the root systems to be free of constraints surrounding the stem and root systems. Physical contact is minimized so that it does not hinder natural growth and root expansion or access to pure water, air exchange and disease-free conditions.

Benefits of oxygen in the root zone

Oxygen in the rhizosphere (root zone) is necessary for healthy plant growth. As aeroponics is conducted in air combined with micro-droplets of water, almost any plant can grow to maturity in air with a plentiful supply of oxygen, water and nutrients.

Some growers favor aeroponic systems over other methods of hydroponics because the increased aeration of nutrient solution delivers more oxygen to plant roots, stimulating growth and helping to prevent pathogen formation.

Water and nutrient hydro-atomization

Aeroponic equipment involves the use of sprayers, misters, foggers, or other devices to create a fine mist of solution to deliver nutrients to plant roots. Aeroponic systems are normally closed-looped systems providing macro and micro-environments suitable to sustain a reliable, constant air culture. Numerous inventions have been developed to facilitate aeroponic spraying and misting. The key to root development in an aeroponic environment is the size of the water droplet. In commercial applications, a hydro-atomizing spray is employed to cover large areas of roots utilizing air pressure misting.

Nutrient uptake

The discrete nature of interval and duration aeroponics allows the measurement of nutrient uptake over time under varying conditions. Barak et al. used an aeroponic system for non-destructive measurement of water and ion uptake rates for cranberries (Barak, Smith et al. 1996).

In their study, these researchers found that by measuring the concentrations and volumes of input and efflux solutions, they could accurately calculate the nutrient uptake rate (which was verified by comparing the results with N-isotope measurements). After verification of their analytical method, Barak et al. went on to generate additional data specific to the cranberry, such as diurnal variation in nutrient uptake, correlation between ammonium uptake and proton efflux, and the relationship between ion concentration and uptake. Work such as this not only shows the promise of aeroponics as a research tool for nutrient uptake, but also opens up possibilities for the monitoring of plant health and optimization of crops grown in closed environments.

Categories: Agri-News, New Technology Tags:
  1. No comments yet.
  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: